Saturday, April 11, 2009

Video

Video is the technology of electronically capturing, recording, processing, storing, transmitting, and reconstructing a sequence of still images representing scenes in motion.

Aspect ratio

Aspect ratio describes the dimensions of video screens and video picture elements. All popular video formats are rectilinear, and so can be described by a ratio between width and height. The screen aspect ratio of a traditional television screen is 4:3, or about 1.33:1. High definition televisions use an aspect ratio of 16:9, or about 1.78:1. The aspect ratio of a full 35 mm film frame with soundtrack (also known as the Academy ratio) is 1.375:1. Ratios where the height is taller than the width are uncommon in general everyday use, but do have application in computer systems where the screen may be better suited for a vertical layout. The most common tall aspect ratio of 3:4 is referred to as portrait mode and is created by physically rotating the display device 90 degrees from the normal position. Other tall aspect ratios such as 9:16 are technically possible but rarely used. (For a more detailed discussion of this topic please refer to the page orientation article.) Pixels on computer monitors are usually square, but pixels used in digital video often have non-square aspect ratios, such as those used in the PAL and NTSC variants of the CCIR 601 digital video standard, and the corresponding anamorphic widescreen formats. Therefore, an NTSC DV image which is 720 pixels by 480 pixels is displayed with the aspect ratio of 4:3 (which is the traditional television standard) if the pixels are thin and displayed with the aspect ratio of 16:9 (which is the anamorphic widescreen format) if the pixels are fat.


Display resolution

The size of a video image is measured in pixels for digital video, or horizontal scan lines and vertical lines of resolution for analog video. In the digital domain (e.g. DVD) standard-definition television (SDTV) is specified as 720/704/640×480i60 for NTSC and 768/720×576i50 for PAL or SECAM resolution. However in the analog domain, the number of visible scanlines remains constant (486 NTSC/576 PAL) while the horizontal measurement varies with the quality of the signal: approximately 320 pixels per scanline for VCR quality, 400 pixels for TV broadcasts, and 720 pixels for DVD sources.

Aspect ratio is preserved because of non-square "pixels". New high-definition televisions (HDTV) are capable of resolutions up to 1920×1080p60, i.e. 1920 pixels per scan line by 1080 scan lines, progressive, at 60 frames per second. Video resolution for 3D-video is measured in voxels (volume picture element, representing a value in three dimensional space). For example 512×512×512 voxels resolution, now used for simple 3D-video, can be displayed even on some PDAs.

Number of frames per second

Frame rate, the number of still pictures per unit of time of video, ranges from six or eight frames per second (frame/s) for old mechanical cameras to 120 or more frames per second for new professional cameras. PAL (Europe, Asia, Australia, etc.) and SECAM (France, Russia, parts of Africa etc.) standards specify 25 frame/s, while NTSC (USA, Canada, Japan, etc.) specifies 29.97 frame/s. Film is shot at the slower frame rate of 24frame/s, which complicates slightly the process of transferring a cinematic motion picture to video. The minimum frame rate to achieve the illusion of a moving image is about fifteen frames per second.


Interlacing

Video can be interlaced or progressive. Interlacing was invented as a way to achieve good visual quality within the limitations of a narrow bandwidth. The horizontal scan lines of each interlaced frame are numbered consecutively and partitioned into two fields: the odd field (upper field) consisting of the odd-numbered lines and the even field (lower field) consisting of the even-numbered lines. NTSC, PAL and SECAM are interlaced formats. Abbreviated video resolution specifications often include an i to indicate interlacing. For example, PAL video format is often specified as 576i50, where 576 indicates the vertical line resolution, i indicates interlacing, and 50 indicates 50 fields (half-frames) per second.

In progressive scan systems, each refresh period updates all of the scan lines. The result is a higher perceived resolution and a lack of various artifacts that can make parts of a stationary picture appear to be moving or flashing. A procedure known as deinterlacing can be used for converting an interlaced stream, such as analog, DVD, or satellite, to be processed by progressive scan devices, such as TFT TV-sets, projectors, and plasma panels. Deinterlacing cannot, however, produce a video quality that is equivalent to true progressive scan source material.








No comments:

Post a Comment